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A new solution-adaptive gridding method has been developed for the solution
of discretized systems of coupled nonlinear elliptic partial differential equations on
rectangular domains. Such a method is required for the numerical solution of realistic
combustion problems, in which physical quantities may vary by orders of magnitude
over one-tenth of a millimeter at atmospheric pressure, or over micrometers at higher
pressures. The local rectangular refinement (LRR) method maintains orthogonality
at grid-line intersections but lifts the tensor product restriction common to traditional
grids, producing unstructured grids. Governing equations are discretized throughout
the domain using newly derived forms, and Newton’s method is used to solve the
resulting system. On a simple test case with a known solution, the LRR method and
its new discretizations are found to be more accurate than gridding methods represen-
tative of those appearing previously in the literature. For the more realistic problem
of nonreacting driven square cavity flow, the LRR solution agrees very well with
previously published data. When the LRR method is applied to a practical reacting
flow (a rich axisymmetric laminar Bunsen flame with complex chemistry, multi-
component transport, and an optically thin radiation submodel), grid spacing highly
influences the inner flame’s position, which stabilizes only with adequate refinement.
The vorticity–velocity formulation of the governing equations is shown to produce
valid results when used in conjunction with the LRR gridding technique. Further-
more, each LRR grid is used to form a nonuniform equivalent tensor product (ETP)
grid and also, in most cases, an equispaced fully refined (FR) grid; these additional
grids are supersets of the LRR grids and thus contain refinement in exactly the same
regions. Performance comparisons between the LRR, ETP, and FR grids indicate
that the LRR method provides substantial savings in execution time and computer
memory requirements, without compromising solution accuracy.c© 1999 Academic Press
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1. INTRODUCTION

Combustion, a thermochemical and fluid dynamic process in which fuel and oxidizer
meet and energy is released, is of fundamental importance. Despite technological advances
in computer speed and size, it is still not possible to model accurately flames with both
complex chemistryandcomplex geometry, because of the large computational grids and
memory required by conventional methods. Memory demands are particularly high when
the governing equations are solved using a coupled approach necessitated by the highly
reactive nature of combustion problems, instead of the field-by-field (or “one variable at
a time”) solution procedure often employed in nonreacting fluid flow problems. This size
constraint generates a need for numerical techniques which will solve a given problem to
a desired degree of accuracy, using fewer grid points than a traditional mesh, while at the
same time incorporating efficient use of memory and displaying competitive solution times.
The combination of sophisticated adaptive gridding and realistic combustion modeling
is the focus of the current work. The present paper develops a new adaptive gridding
method and validates it using three test problems (two nonreacting flows and one reacting
flow); additional combustion applications are explored elsewhere [4, 5, 46], with the latter
reference being the first author’s dissertation.

One of the most important components of the numerical solution process is the grid
chosen to discretize the domain. Ideally, grid points should cluster in regions of high solution
activity, but elsewhere only a few points might be needed to resolve the solution. A mesh
exhibiting these characteristics can be produced via an iterative adaptive process which
incorporates several ingredients, such as the weight functions for equidistribution; choice
of mechanism for point addition or point moving; retention or nonretention of tensor product
structure; maintenance of orthogonality at all, some, or none of the grid-line intersections;
various mesh constraints; the discretization forms; and the adaption termination criteria. Not
all choices will produce viable methods. Existing techniques can be classified as belonging
to one of three categories, as follows.

Globally refined rectangular solution-adaptive gridding results in nonuniformly spaced
meshes with a tensor product structure, meaning that every grid point is located at the inter-
section of two grid lines, each of which extends from one side of the domain to that opposite.
This technique is rooted in one-dimensional mesh equidistribution and its supporting theory
[8, 24, 28, 37]. A major advantage to this type of gridding is that the derivatives remain
easy to calculate. In various applications (for example, [39, 42]), grid spacing is continually
altered, based on weight functions comprising the gradient and curvature of the solution
iterate [40]. Unfortunately, each time a grid line is added with the intent of reducing the
error in a particular region, points are unnecessarily introduced at each intersection of this
new line with all perpendicular mesh lines.

In the second category of solution-adaptive grid formulation, intersecting grid lines are no
longer constrained to meet orthogonally, and the curvilinear grids in physical space may be
mapped to simple tensor product grids in computational space. Weight functions are again
employed in forming the mesh, but extreme deviation from orthogonality must be avoided
in order to limit truncation error. Existing work can be divided into two groups: alternat-
ing adaption and solution, which has been applied to droplet burning and one-dimensional
premixed flames [17], and to premixed flame propagation in two dimensions [11]; and si-
multaneous computation of node positions and solution, in which the physical coordinates
become two additional dependent variables. The latter techniques were pioneered by [7];
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more recently, similar methods have been applied to basic test functions in one and three di-
mensions [32]. Unfortunately, such methods make linear problems nonlinear and nonlinear
problems much more nonlinear, limiting their practicality.

The third category of solution-adaptive grid construction is that of locally refined rect-
angular gridding. The grid is refined through cell subdivision, which occurs without the
global introduction of many unnecessary points—a major advantage. Although the deriva-
tives do not require transformation to a computational space, the loss of the tensor product
structure increases the difficulty of finding neighboring points. Another challenge lies in
properly treating points at the interfaces between different refinement levels of the mesh.
Despite such complexities, these methods have been utilized in a variety of applications. A
two-dimensional local mesh refinement method consisting of a base grid with superimposed
finer submeshes was developed and applied to hyperbolic conservation laws [6]; this method
was later extended to three-dimensional hyperbolic problems [3]. In such applications, the
submesh solutions are advanced in time independently of one another, and values are pe-
riodically updated at points common to more than one mesh. Similar methods have been
used for incompressible flows [21] and for premixed Bunsen flames with one-step chem-
istry approximations [14, 31]. Such methods, however, cannot be reasonably applied to fully
elliptic realistic combustion problems, in which simultaneous solution atall grid points is
necessary for obtainingrapidly converging, accurate solutions [48]. This disadvantage is
overcome by the local rectangular refinement (LRR) method [46], which incorporates the
simultaneous solution of all governing equations at all points in the domain by a damped,
modified Newton’s method. (It should be noted that while other combustion researchers have
successfully implemented field-by-field solvers on unstructured grids, they have thus far
solved only diffusion flame problems with one- or two-reaction chemistry approximations
[34]. Spatial gradients of minor chemical species not present in such approximations are an
order of magnitude larger than gradients of the major species; gradients of minor species in
premixedflames (such as Bunsen flames) are larger by yet another order of magnitude. The
LRR method has been used successfully to solve both diffusion flames and Bunsen flames
incorporating complex chemical mechanisms [4, 5, 46], including the final application in
the present paper.)

The remainder of the paper is organized as follows. The LRR solution-adaptive gridding
method is examined in detail in Section 2. Section 3 develops new discretizations and new
coarse–fine interface treatments, the accuracies of which have been tested against traditional
discretizations appearing in the literature. Section 4 discusses the nonlinear system solver
and also explores the nonstandard sparsity structure of the Newton’s method Jacobian ma-
trix, produced by the new inter-point couplings of the discretizations. In Section 5, three ap-
plication problems are posed and solved: numerical results are evaluated for the temperature
field in a rectangular heated plate; the temperature and flow fields of thermally and dynam-
ically driven square cavity flows; and the temperature, flow, and chemical species fields in a
rich Bunsen flame. Each of the latter two problems is governed by a different set of coupled,
nonlinear, elliptic partial differential equations, the vorticity–velocity formulations of which
are seen to produce valid results when used in conjunction with the new gridding technique.
In addition, performance and accuracy comparisons are made among LRR solutions, solu-
tions found on equivalently refined tensor product (ETP) grids (formed by extending grid
lines of the LRR grids to each domain boundary), and solutions found on equispaced fully
refined (FR) grids. All calculations presented in this paper were performed on an IBM
RS/6000-590 computer. Finally, Section 6 draws conclusions and outlines future work.
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2. LRR SOLUTION-ADAPTIVE GRIDDING ALGORITHM

The first step in any computational method is the discretization of the physical domain.
In general, however, the purpose of grid adaption is defeated if too unsuitable a grid is
imposed on a problem at the start, since the legacy of the initial grid may be too strong for
the adaption process to overcome. A balance must be struck between too few and too many
points, which can often be done only through experience. In the LRR solution-adaptive
gridding method, the initial grid may be an equispaced or nonequispaced orthogonal tensor
product grid, subject to two constraints. First, no part of the domain may become entirely
devoid of points, so an upper limit (0.25) is imposed on the ratio of the maximum mesh
spacing to the domain length, in each coordinate direction. Second, the mesh is buffered by
restricting the ratio between adjacent point spacings, which, in turn, limits the truncation
error; for the current applications, the ratio must fall between 2.5−1 and 2.5. It should be
noted that while the nonreacting flows explored in the present paper begin withequispaced
starting grids, the LRR method has been developed for the general case ofnonequispaced
starting grids. As will be demonstrated via the rich Bunsen flame application of the present
paper, the latter grids are indispensable for initiating the adaptive solution of full-chemistry
combustion problems [4, 5, 46], in which a small grid spacing near the burner mouth is a
key component in obtaining a stable converged solution, regardless of the spacing in the
rest of the domain.

2.1. Mesh Structure

The LRR starting grid is referred to as the Adaption 0 grid or base grid, because its points
will be present in all successive adaptions. The cells, or boxes, of this grid will be labeled
Level 0 boxes. This mesh is composed of two types of points, as shown in Fig. 1: interior
points which have nine-point stencils associated with them (indicated by (a)), and external
boundary points which have either six-point (b) or four-point (c) stencils. The members of
each stencil will be referred to by their compass direction relation to the central point P (W,
E, S, N, SW, SE, NW, or NE).

During the adaption process, individual boxes of the grid are flagged (as will be detailed
later) for subsequent refinement, which entails placing a nine-point stencil within each box.
The existing corners of the box become points SW, SE, NW, and NE of the new stencil. The
central point is added at the box’s center, and, if necessary, some or all of the W, E, S, and
N points are also added, depending upon the configuration of the surrounding mesh. Thus,
the refinement process subdivides the original Level 0 box into four smaller Level 1 boxes
of equal size. The stencil which has been added during this process is said to be of Level 1.
It is evident that a LevelL box will have dimensions equal to( 1

2)
L times the dimensions of

the Level 0 box within which it is located.
Points in an adapted LRR grid commonly fall into three categories: regular interior points

(points with nine-point stencils, at which four boxes adjoin); internal boundary points (points
at the intersection of three boxes); and external boundary points (points touching fewer than
three boxes). Internal boundary points lack a full computational stencil, since they lie on
an interface between two different levels of refinement. Discretizations at such points are
greater sources of error, especially when interpolation is substituted for governing equation
discretization. In order to limit the rapidity with which grid spacing changes and, in turn,
control the truncation error, the grids are forbidden to have two adjacent internal boundary
points.
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FIG. 1. Example of a nonequispaced initial grid for the LRR method, indicating a nine-point stencil at an
interior point (a), a six-point stencil at an external boundary point (b), and a four-point stencil at an external
boundary corner point (c).

The effect of this constraint is shown in Fig. 2. The first grid (a) contains two occurrences
of pairs of adjacent internal boundary points (circled) and therefore violates the previously
stated grid rule. This situation is remedied by refining additional cells, as demonstrated
in (b); however, the resulting mesh is now subject to a second constraint, namely that the
boxes meeting at any single point cannot differ by more than one level from each other.
The circled point is located at the convergence of four boxes, but the box to its upper
left is two levels coarser than that to its lower right. Therefore, one more cell must be
refined before the grid is acceptable, as in (c). In fact, all grids which obey the second grid
rule automatically satisfy the first. Application of these two grid rules results in a limited

FIG. 2. Violation (a) and repair (b) of adjacent internal boundary points, producing an adjacent box-level
violation, which is then repaired (c).
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number of allowable mesh configurations, each consisting of one, two, three, or four boxes
which meet to define a central point P of a computational stencil. There are 15 allowable
regular interior configurations, 4 internal boundary configurations, and 16 external boundary
configurations; all configurations are composed of reflections and/or rotations of 9 basic
configurations. For further details, as well as configuration diagrams, see [46]. No other
configurations are admitted by the grid rules.

By examining several configurations, as has been done in [46], it becomes apparent that
the number of boxes which must be refined due to the addition of a single new stencil is
bounded. This limit exists because the original grid, prior to that first added stencil, must
have already contained a certain degree of refinement in order to satisfy all grid constraints.
The least upper bound (LUB) on the number of possible refinements caused by the creation
of a single stencil of LevelM is

LUB = 3 max(M − 1, 0)+ 5 max(M − 2, 0). (1)

It is important to be able to derive such a limit, both to ensure that the grid constraints do
not force complete refinement of the entire grid and to aid in programming the algorithm.

2.2. Solution-Adaptive Refinement

One of the four fundamental components of adaptive gridding, as described in [45],
is “a means for communicating the need for a redistribution of points in the light of the
error evaluation, and a means of controlling this redistribution.” For two-dimensional local
gridding, various researchers have tried several methods of flagging cells for refinement.
The least automated method is that employed by [9] in the solution of an axisymmetric
laminar diffusion flame: manual refinement of cells knowna priori to be located near
the flame front. A more practical method for targeting cells is the equidistribution of a
positive weight function, which is equivalent to minimization of a grid property. Points will
be made to cluster where the weight function is large, so it must contain some measure
of the rapidity of change of the solution. The weight functions of [14, 31] contain linear
combinations of first and second derivatives of some of the dependent variables, since
these best approximate trends in the truncation error. In [49], circulation around each cell
is examined, and refinement occurs when a preset value is exceeded; this technique is
equivalent to using a weight function.

In the present method, weight functions are used to determine which grid cells are to be
refined and to test grid termination criteria. First,Ndep weight functions are formed at the
center of each box, whereNdep is the number of dependent variables present in the physical
problem. These weight functions are then used to createNdepnew grids, the union of which
forms the actual single new grid. The use of theNdep weight functions could be interpreted
as the employment of a single weight function which, in each box, is the maximum of the
existing Ndep weight functions. However, the normalization procedures used here negate
the exact equivalence of these approaches.

Because each of theNdepweight functions is to be formed at each box’s center, it will use
dependent variable values from each of the four corners of that particular box, since those
values can be easily accessed. Thus, only first derivatives will be present inW, since higher
derivatives require values at additional grid points. It should be noted that weight functions
based only on first derivatives may contain some numerical fluctuation stemming from
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local solution error within the bounds of the tolerance to which that solution was previously
determined. However, the weight functions are first smoothed, as will be described shortly,
and then globally subequidistributed, with both processes serving to minimize greatly the
effect of any spurious local fluctuations. It is also true that the weight functions do not contain
a direct approximation of truncation error as is sometimes the case in adaptive methods,
because such an approximation would require at least 10 times as much computation as the
current approach (for a practical calculation containing 10 to 20 derivative terms in each
of its governing equations, on average); the additional computational cost is not warranted,
given the manner in which the weight functions are employed.

The following form has been chosen for the weight function,
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where thefk (k= 1, 2, . . . , Ndep) are the dependent variables, subscriptb denotes the box
number, and superscript U stands for “unsmoothed.” If any dependent variable happens to
be constant over the entire grid, the denominator becomes zero, provisions for which have
been made in the program. The weight function includes the additive constant “1” to temper
solution adaptivity with grid uniformity. The derivatives in (2) are discretized as follows,
where1x and1y are the box dimensions, and new subscripts represent lower left, lower
right, upper left, and upper right:[[
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The error terms (not shown) are second order in1x and1y.
The overall character of adaptive grids reflects the nature of the weight functions; thus,

smoothing the weight functions indirectly smooths variations in the grid spacing. A Laplace-
type filter is used, discretized differently than other LRR derivative discretizations, since
the weight functions are associated with theboxesrather than with the grid points them-
selves. At horizontal (vertical) boundaries,∂2W/∂y2 (∂2W/∂x2) is approximated by zero.
This approximation means that the weight functions at the boundaries are smoothed using
information from along the boundaries only, which has, in practice, no effect on the amount
of refinement at the domain boundaries. The grid rules allow 36 interior box configurations,
28 boundary box configurations, and 32 corner box configurations. All of these configu-
rations are superpositions of rotations and/or reflections of only five base configurations,
and a Laplacian discretization has been derived for each, as detailed in [46]. Discretization
of the zero Laplacian is simply a mechanism through which to create a smoothing filter
for the weight function values. It can be recast into a more useful form by solving for the
value of the weight function at the center of the central box, which is then averaged with
the unsmoothed value to produce the smoothed weight function. This process, which con-
stitutes a single smoothing pass, is performed on each weight function in each box, with
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the exception of the four domain corner boxes, whose weight functions remain unchanged.
The number of smoothing passes,Nsmth, must be specified and is typically 8 to 10.

During the adaption process, the goal is the creation of a grid on which the weight
functions aresubequidistributed, meaning that the following inequality will be satisified for
each dependent variablefk, for each boxb in the grid:∫ ∫

Boxb
Wk,b(x, y) dx dy≤ Ck. (4)

This expression can be rewritten in a more useful form as

1

Ck

∫ ∫
Boxb
Wk,b(x, y) dx dy≤ 1. (5)

The double integral is approximated by multiplying the integrand, evaluated at the box
center, by the area of the box. If the left side of (5) exceeds unity, then the factor by which
it is in excess equals the number of boxes into which boxb must be divided in order to
achieve subequidistribution. However, any given box is not allowed to undergo more than
one refinement during a single sweep through the grid, so if the left side exceeds 4, a state of
subequidistribution will not immediately be reached when the box is quartered. If, instead,
the left side is less than 4, refinementwill result in local subequidistribution.

In practice, the constantsCk are found first, by integratingWk,b over the entire domain
and dividing by the number of boxesNbxs, so that the quantity on the left side of inequality
(5) can be calculated for each value ofk andb. This value is then divided byεequi, a user-
specified parameter typically ranging from 1.5 to 3;εequi is chosen as 2 for the application
problems presented here. The purpose of this division is to avoid overdoing the refinement
process, which may occur if several of the left-side values are only slightly greater than 1,
and it also allows the adaption to proceed in a more controlled manner. Interpolation onto
the new points is a simple averaging process, since any new W, E, S, or N point lies halfway
between existing points. Dependent variable values at the central point of the new stencil
are approximated by averaging the values from the four corners of the refined box.

2.3. Increasing Grid Robustness

Not only the magnitudes of dependent variables at given locations may change as the
grid is altered. If the grid has been greatly refined in the region where the high gradients
were originally located and then the very act of refining (and then re-solving) causes those
gradients to migrate, successive grids will contain unnecessary points in the region that
was initially refined. Therefore, remeshing is performed at the start of each LRR adaption,
which removes any unnecessary refinement. The remeshing time depends solely onNdep

andNbxs, so for a given problem size, the more complex the governing equations (and thus
the longer the solution process), the smaller the percentage of the total run time that is
occupied by remeshing. In the nonreacting flow applications examined in the present paper,
remeshing consumes about 0.2% of the total CPU time. However, in a practical combustion
calculation such as the rich Bunsen flame explored in the present paper or the flames in
[4, 5, 46], for example, remeshing occupies roughly 0.001% of the total CPU time, with the
remainder spent on the Newton solver (Jacobian formation: approximately 90%; solution
of the resulting linear system: approximately 10%).

If too small an area is refined, the front of interest may try to equilibrate at a position
beyond the refined area, becoming falsely trapped at the coarse–fine interface. In addition,
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because the discretization errors scale as spatial derivatives of the dependent variables,
error at internal boundary points could be reduced if interfaces were made to occur further
from the region of high gradients. To remedy both problems, the region of refinement is
extended in a controlled manner by a process referred to here aslayering. At the start of
each adaption, certain cells are flagged for refinement based on weight function excesses,
as described above. Then, any cells which are withinNlayer,A boxes of these are also refined,
thus surrounding the originally refined area withNlayer,A layers of refined cells, whereA
refers to the adaption number.

The layering parameterNlayer,A is calculated based on the user-specified number of layers
of refinementNlayer,1 desired during the first adaption. Typical values ofNlayer,1 are less
than 5. The number of layers with which eligible cells will be surrounded during Adaption
A can be defined recursively as

Nlayer,A = min[0, 2 · (Nlayer,A−1− 1)]; (6)

the equivalent nonrecursive definition is given by

Nlayer,A = min
[
0, 2(A−1) · (Nlayer,1− 2)+ 2

]
. (7)

Had Nlayer,A been chosen independent of the adaption numberA, then the actual width of
the buffering layer would decrease by a factor of 2 with each successive adaption; thus,
to maintain adequate layering, the parameterNlayer,A must depend onA. However, it is
important to have the layered region from one adaption fall within the layering from the
previous adaption, because this means that successively smaller areas are being refined
due to layering. That this important criterion is met can be seen in recursive definition
(6). A second key feature of theNlayer,A definition is that asA→∞, the layering region
thickness approaches12(Nlayer,1 − 2), as measured in terms of Level 0 box widths. More
generally, the layering region thickness approaches a nonzero limit, and it approaches this
limit from above. Such behavior is required in order to avoid the placement of coarse–fine
grid interfaces infinitesimally close to the region of high solution activity.

An example of layering is shown in Fig. 3, in which the number of layers is 1, for
simplicity. A single cell (referred to as a primary cell) has undergone refinement because
of weight function excesses, shown in bold. Without layering, the final state of the grid
would be as pictured in (a). However, with layering, a few additional cells (secondary
cells) are refined (b), to move the grid interfaces further from the region of high solution
activity, thus reducing the error and aiding the convergence process. Dotted lines indicate a
cell refinement performed so that the grid obeys all grid constraints. To avoid unnecessary
refinement, no secondary cell is refined if it is already of a finer level than the primary cell.

FIG. 3. Grid before (a) and after (b) layering. Dotted lines in (b) indicate additional refinement forced by grid
constraints.
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Layers are put around only those primary cells being refined during thecurrentadaption; if
each adaption were to include the layering of previously refined cells, then eventually the
entire grid might be refined.

Finally, the mesh must undergo one last sweep to remove single-box holes, which occur
when all boxes surrounding a given box are refined, but the central box has not been flagged
for refinement. This situation does not violate any prescribed grid criteria, but if the central
box remains unrefined, the midpoints of its sides are four internal boundary points, at which
the discretizations are less accurate than at regular interior points. If, on the other hand, the
central box is refined, entailing the addition of only one point, the four internal boundary
points are transformed into regular interior points. Clearly, the benefits of eliminating four
internal boundary points far outweigh the cost of adding a single point. This algorithm adds
fewer points than that employed by some finite element researchers [1, 2]. Single-box hole
removal is also performed on boxes along the external domain boundary, as long as all
surrounding boxes belong to a finer level than the box under consideration.

Interpolation is used to form an initial guess on the new grid, which will then undergo an
iterative solution process (i.e., Newton’s method); interpolation is never used to produce a
final solution. The overall adaption process terminates when the smoothed weight functions
are subequidistributed to within 5%.

3. DISCRETIZATION TECHNIQUES

Given a particular point P, how are the remaining points of its computational stencil
chosen? In the majority of the literature, finite difference discretizations of derivatives on
unstructured rectangular grids use single-scale stencils (see, for example, [3, 6, 14, 21,
31, 44]). In such an approach, the chosen stencil is the smallest such that

xNE− xN = xSE− xS = 1x+, yNE− yE = yNW − yW = 1y+,
(8)

xN − xNW = xS− xSW = 1x−, yE− ySE= yW − ySW = 1y−,

while at the same time at least one of the four rectangular “macro-cells” comprising the
stencil (P–W–SW–S, P–E–NE–N, P–S–SE–E, P–N–NW–W) must have no internal grid
structure, as shown in Fig. 4. Derivatives are discretized in the same way as on globally
refined rectangular grids. In general, such discretizations are first order in the grid spacing,

FIG. 4. Example of a single-scale computational stencil.
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FIG. 5. Examples of multiple-scale computational stencils.

although there do exist nonuniform grid spacings for which the error is better than first order.
However, only in the equispaced case is the error truly second order in the grid spacing. The
largest drawback to single-scale discretizations is that their use precludes the conservation
of fluxes across grid interfaces.

In the current research, however, derivatives at regular interior points (and domain bound-
ary points) are discretized in a novel multiple-scale way, which couples the variable values
at points belonging to different levels of the mesh. Given a point P, W is the first point en-
countered when proceeding westwards from P; E, S, and N are the first points encountered
when traveling in their respective compass directions from P. Point SW is the lower left cor-
ner of the box to the lower left of P, SE is the lower right corner of the box to the lower right
of P, and so on. Thus, the points closest to central point P make up the multiple-scale stencil.
Four examples are shown in Fig. 5, and [46] details the full range of multiple-scale sten-
cils, including the corresponding derivative discretizations; representative discretizations
are also given in the appendices of [4].

In addition to the natural coupling between information of differing length scales, multiple-
scale discretizations more firmly tie together the solution values at the internal boundary
points with those at regular interior points. This connection helps to overcome what is
traditionally a weak link in unstructured rectangular gridding: inaccurate determination of
the solution at internal boundary points. Discretizations, presented in [4, 46], have been
derived by combining function-value Taylor expansions at neighboring points about point
P and then eliminating as many unwanted terms as possible. In 9 of the 15 possible allow-
able mesh configurations around regular interior points, the multiple-scale and single-scale
discretizations are of the same order. Moreover, the multiple-scale truncation errors are all
smaller than the corresponding single-scale ones by a factor of either 2 or 4; examples are
given in Appendix A of [4]. In the remaining six cases, the multiple-scale stencils produce
truncation errors which are first order, regardless of the spacing of the underlying grid. How-
ever, this behavior is far outweighed by the benefits of numerically coupling information
from different length scales, as will be seen later.
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FIG. 6. Internal boundary point lacking a northern neighbor.

Treatment of the internal boundary points is much less straightforward. The possibilities
examined here will focus on an internal boundary point P lacking a north neighbor, shown
in Fig. 6; although the displayed base grid is uniformly spaced in each coordinate direction,
such spacing is not required. The majority of the literature dealing with finite differenc-
ing on unstructured grids uses a two-point linear interpolant (see, for example, [3, 6, 21,
49]) to replace the governing equation for each variable at P. This two-sided interpolant
(W and E) is accurate to first order, with a second-order error. However, when P appears
within a discretization scheme centered at one of its neighbors, this error contributes first-
or zeroth-order error if the discretization is that of a first or second derivative, respectively.
A smaller group of researchers (see [13, 14, 31, 44]) uses a five-point interpolant (W, E,
S, SW, and SE), accurate to second order, which contributes either second- or first-order
error to first- or second-derivative discretizations at neighboring points, respectively. De-
spite this improvement, the five-point interpolant’s one-sidedness can produce unwanted
solution oscillations. Higher-order interpolating polynomials involve more points, destroy
the structure of the Newton’s method Jacobian matrix (producing more than nine nonzero
blocks per block row), and are even more oscillatory.

The current research explores discretization of the actual governing equations at in-
ternal boundary points as an alternative to interpolants. For the configuration in Fig. 6,
x-derivatives can be discretized using traditional three-point centered differences, which
are flux-conservative. The discretization of∂ f/∂y, however, can be used to illustrate a new
set of discretizations, to be referred to as a “pseudo-nine-point” treatment, which has been
derived and is presented in detail in [46] and in Appendix B of [4]. By averaging values
from points NW and NE, a pseudo-north neighbor can be created for internal boundary
point P. Such a pseudo-point will appear neither in the grid nor in the discretized govern-
ing equations, but, in discretization forms normally used forglobally refined rectangular
grids, dependent variable values at whatwouldbe point N are replaced by the pseudo-north
neighbor’s values. The first-derivative discretization becomes[[

∂ f

∂y

]]
P

=
1
2( fNE+ fNW)− fS

(1y+ +1y−)

Error≈

−4 fxx(1x)2− 3 fyy(1y)2

12(1y) , if 1y+ = 21y− ≡ 1y;
− fxx(1x)2− fyy[(1y+ +1y−)(1y+ −1y−)]

2(1y+ +1y−)
, otherwise.

(9)

This error term is first order in the grid spacing, and the presence offxx comes from the
x-direction interpolation used to produce values at the pseudo-north point. Fortunately, the
coarser areas of the grid (i.e., the northern end of this stencil) have less sharply varying
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solution derivatives. Furthermore, because of the use of layering, most internal boundary
points occur in noncrucial areas of the grid. Therefore, the error is small, in practice. The
derivative∂2 f/∂y2 is treated in a similar manner.

A disadvantage to the pseudo-nine-point discretizations is their lack of flux conservation,
which is especially important at grid interfaces, where the length-scale change artifically
imposed by the grid may introduce spurious phenomena. The remedy lies in choosing
an imaginary control volume associated with point P, and applying Green’s theorem in
the plane to an appropriate integral. The resulting flux-conservative expression for the
first derivative has not yet undergone completion of testing within the algorithm. However,
preliminary results indicate that this discretization may merit additional investigation. Aside
from the results presented in Fig. 13 (in which various discretizations and interpolants are
examined), all calculations presented here employ pseudo-nine-point discretizations at the
internal boundary points.

Important to further exploration of flux-conserving discretizations is the concept of grid
link reciprocity: if point A is involved in point B’s computational stencil, then B is also a
member of A’s stencil, and if A isnot in B’s computational stencil, then B willnot be in
A’s stencil. Flux conservation requires the representation of a flux leaving one grid point
and entering the next to be formulated in exactly the same manner within discretizations at
each of the two points involved. The multiple-scale approach for the regular interior points
and domain boundary points, coupled with the two- or five-point interpolant at internal
boundary points, preserves grid link reciprocity. However, use of the interpolants confounds
any attempt at flux conservation, a situation which can be improved only by discretizing the
governing equations at the internal boundary points. Unfortunately, utilizing the pseudo-
nine-point discretizations destroys the grid link reciprocity. Since it is not possible, within
the nine-point stencil constraint, to conserve flux at all points in an LRR grid, a compromise
is made. Duringx-derivative discretization, the left (right) face of each control volume is
located halfway between points P and W (E); fory-derivative discretization, the bottom
(top) face is halfway between points P and S (N). No control volumes protrude beyond
the domain boundary. Near points other than internal boundary points, these two sets of
control volumes intersect and yet neither overlap nor leave gaps in the domain, so only at
the internal points boundary are two sets truly used.

Convective terms are discretized differently than other terms involving first derivatives, in
order to avoid the unphysical oscillations or iterative-method divergence commonly caused
by the use of centered differences on these terms. Traditional upwinding schemes can
introduce artificial viscosity effects [35] at high Reynolds numbers [16] or for insufficiently
refined grids. The generalized discretizations derived here retain this feature, which can
be minimized with a fine enough grid. Discretizations of convective derivatives on LRR
grids are a generalization of traditional upwind differencing. For regular interior points, the
traditional scheme itself is used. At internal boundary points, discretizations utilizing the
philosophy of the pseudo-nine-point approach have been derived.

As an example, an internal boundary point P lacking a north neighbor is again considered,
shown in Fig. 6. Values at the NW and NE points are averaged and then used in place of
the N values in the traditional scheme, resulting in

[[
v
∂ f

∂y

]]
P

=


1
2 [vP+ 1

2 (vNE+ vNW)][ 1
2 ( fNE+ fNW)− fP]

1y+
, if 1

2

[
vP+ 1

2(vNE+ vNW)
]
< 0,

1
2 (vP+ vS)( fP− fS)

1y−
, if 1

2(vP+ vS) > 0,
(10)
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which has a first-order error associated with it. The interpolation error, which is responsible
for a term in the truncation error involving1x, is of the same order as the rest of the error
and thus does not heavily influence the accuracy. The one drawback to this discretization,
however, is that it is not flux-conservative. More recently, a flux-conservative form has been
derived by the authors and shows promise (please see Appendix C of [4]); this form, along
with the flux-conservative first-derivative discretization mentioned above, may be examined
in future work.

Even the potential inclusion of the two flux-conservative forms currently under investi-
gation, mentioned above, will not render the LRR method a completely flux-conservative
one; as stated earlier, it is impossible to conserve flux at all points in an LRR grid while
using only nine-point stencils. However, as pointed out in [27], it is not possible to achieve
simultaneously both flux conservationandaccuracy. This reference states that, at grid inter-
faces, “conservation proves to be an important property mostly in cases of moving shocks
for accurate prediction of their location and speed. Conversely, accuracy is more of an issue
in a boundary layer, since the second-order derivatives (viscous terms) are important ...”
[27, p. 129]. The reader is reminded that the LRR method has been developed with a view
toward low Mach number laminar flame applications [4, 5, 46], for which accuracy is crucial.

4. NUMERICAL SOLUTION PROCEDURE

Discretization of the governing equations produces a system ofNeq coupled nonlinear
equations, where the number of equationsNeq equal Npts multiplied by the number of
dependent variablesNdep at each grid point. This discretized system can be written in
residual form as

F(U ) = 0, (11)

whereU is the unknown vector. Newton’s method will be used to seek a solutionU ∗ to this
system, given an initial guessU0. At the nth iteration of the method, then+ 1st solution
iterate is formed from thenth iterate through the equation

J(Un)(Un+1−Un) = −λnF(Un), n = 0, 1, 2, . . .. (12)

The Jacobian matrix is given byJ(Un)= ∂F(Un)/∂U , and the parameterλn (0<λn≤ 1)
multiplicatively damps the Newton correction [12].

If the solution is converging quickly enough (as quantified in [38] via a combination of
correction step norms, preset constants, and iteration number), then the previous Jacobian
can be reused. This modified Newton’s method displays approximately linear convergence,
but the computational time may be shorter overall simply because of the reduction in
the number of time-consuming Jacobian evaluations. The Newton iteration is considered
to have converged when the 2-norm of a scaled correction vector is less than a preset,
problem-specific tolerance. Several steady-state solves may be performed consecutively,
with successively tighter tolerances. The spatially elliptic discretized governing equations
can be made parabolic in time by appending the term∂U/∂t to the residual form of the
equations [41]. Inclusion of the transient terms makes the Jacobian more diagonally dom-
inant, generally improving convergence of the linear algebra solver. In addition, the same
Jacobian is used for several time steps, saving computational time. The time step is chosen
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adaptively, as in [42]. Depending upon the difficulty of the application problem, the time-
relaxation procedure may be employed for a specified number of time steps, prior to the
solution of the steady-state equations.

Regardless of the Jacobian structure, which will be addressed below, application of
Newton’s method has linearized the original system of equations. Based on the results of a
linear system solver study [20], the bi-conjugate gradient stabilized (Bi-CGSTAB) method
[47] has been chosen, with a Gauss–Seidel preconditioner. The linear system solver is
considered to have converged when the 2-norm of the scaled residual vector is less than or
equal to one-tenth of the tolerance used in Newton’s method.

In practice, since all computational stencils used here employ at most nine points, the
Jacobian matrix will contain a maximum of 9N2

depNpts nonzero entries. Their location de-
pends upon the numbering scheme by which the equations are ordered, which is usually
the same as the grid point numbering scheme. A closer examination of Jacobian structure
requires the concept of the “Jacobian ordering” of grid points (the ordering by which the
corresponding equations are arranged in the Jacobian), which, in the current research, may
differ from the actual grid point numbering scheme (to be referred to as the “physical grid
point ordering”). Because the grids produced via the LRR method are unstructured, the grid
points are numbered in the sequence in which they are added to the grid. This physical grid
point ordering is used solely in the storage and accessing of values in the FORTRAN arrays.
To avoid excessive rearrangement of array entries, linked lists are used to switch between
the Jacobian and physical grid point orderings. Since different stencils involve different
groups of grid points, the choice of stencil type, (i.e., multiple-scale or single-scale) affects
the structure of the Jacobian, as well as the Jacobian ordering of the points. The following
two examples and ordering choices are based upon the new multiple-scale stencils.

The first scheme, implemented on the grid in Fig. 7a, numbers all of the points in the base
grid, moving from the lower left to the upper right, followed by all of the points belonging
to the next finest grid level (again from lower left to upper right), and so on. In Fig. 7b,
the sparsity structure of the corresponding Jacobian is presented. Each box in the matrix is
actually anNdep× Ndepblock, and boxes occupied by black dots denote nonzero blocks. The
Jacobian’s most noticeable characteristic is its lack of the traditional block nine-diagonal
form. Although a block nine-diagonal structure is somewhat present in the upper left two-
thirds of the matrix, the rest does not follow any obvious pattern. A major drawback to
this ordering is the large bandwidth (19 blocks, in this case), which will probably slow the
convergence of the linear algebra solver. Nonreciprocity of grid links produces a lack of
structural symmetry.

The bandwidth can be greatly reduced by choosing a point ordering in which points are
close in sequence to the members of their computational stencils. This strategy motivates
the next scheme, incorporated in the LRR method and shown in Fig. 8a. The grid is the
same, but the numbering now begins in the lower left corner and ends in the upper right.
The Jacobian structure produced by this new ordering appears in Fig. 8b. The bandwidth
has decreased to only 13 blocks, a marked improvement over the previous scheme and one
which is even more substantial for larger grids. The overall Jacobian structure in Fig. 8b is
much closer in appearance to the traditional block nine-diagonal form. A major advantage
to the second point-ordering scheme is that the main block diagonal is immediately adjacent
to an upper and a lower block diagonal. This characteristic, necessary for implementation
of the linear algebra system solver, is one which the first scheme does not possess. However,
even with the desired placement of these diagonals, the standard solver still has required
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FIG. 7. First grid numbering scheme: Jacobian ordering (a) and sparsity structure of resulting Jacobian
matrix (b).

modification to accommodate the placement of the remaining block “diagonals,” because
points frequently participate in more than nine stencils. In the extreme case, a single point
may participate in as many as17 stencils, a rare occurrence reflected by a block column
containing 17 nonzero blocks.

One disadvantage lies in the impact of the unstructured nature of LRR grids on the
efficiency with which the Jacobian matrix can be evaluated. Forstructuredgrids (and the
resulting structured Jacobians), one can simultaneously evaluate groups of independent
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FIG. 8. Second grid numbering scheme: Jacobian ordering (a) and sparsity structure of resulting Jacobian
matrix (b).

columns of the Jacobian with a minimum of subroutine calls [10]; the formation of the
column groups is based on the computational stencil width [42]. Unfortunately, lack of
structure in the LRR grids dictates that this efficient technique cannot be applied and
instead necessitates writing two governing equations subroutines: one which evaluates all
Ndep residuals at all grid points and one which does so at only a single grid point. The
Jacobian is still formed block column by block column, but evaluation requires one call
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to the former routine andNeq calls to the latter; Jacobian formation on a tensor product
grid using the aforementioned efficiencies requires solely1

9 Neq+ 1 calls to the former
routine.

5. NUMERICAL RESULTS AND DISCUSSION

5.1. Rectangular Heated Plate

The LRR method is first applied to the problem of finding the temperature distribution in
a rectangular heated metal plate. The extremely thin plate, oriented in a horizontal plane, is
considered two-dimensional and gravitational effects are neglected. Its physical properties
are temperature-invariant, and it is in contact with a heat source. Air, taken as incompressible,
flows over the plate with a velocityvair= (uair, vair), in whichuair= vair. A top view of the
plate is displayed in Fig. 9. Because the region of high solution activity is oriented obliquely
with respect to the boundary, as shown, this problem strongly tests the capabilities of any
gridding method.

By assuming a Peclet number of unity, an elliptic partial differential equation is derived
from the energy equation, which, when nondimensionalized, becomes

∂T

∂x
+ ∂T

∂y
= ∂2T

∂x2
+ ∂

2T

∂y2
+ q̇(x, y), (13)

FIG. 9. Physical configuration for the rectangular heated plate problem, including five solution contours
(T = 0.2, T = 0.6, T = 1.0, T = 1.4, andT = 1.8).
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whereq̇(x, y) and the boundary conditions are all chosen to give an analytical solution of

T(x, y) = tanh[S(−4x − 2y+ 3)] + 1. (14)

ParameterS controls the steepness of the gradients; whenS = 5, as for the results presented
here,T changes from 10 to 90% of its maximum value over the space of 0.098 length units
in a domain measuring 1× 4 units, as illustrated in Fig. 9. To start the iterative solution
process on the initial grid, the temperature distribution is initially guessed to be planar.

Error is analyzed via a grid-independent estimate over the two-dimensional physical
domainÄ:

Error=
∫ ∫

Ä

|Tcalculated− Tanalytic| d2Ä. (15)

The calculated error does not depend on the grid itself, in the sense that point locations do
not bias the result. Points which are closer together have smaller areas associated with them
and thus contribute less to the overall integral than points which are farther apart.

The rectangular heated plate application demonstrates the flexibility of the LRR method
and the effects of different parameter choices. In all cases, the initial grid is an equispaced
6× 21 mesh. Since solution contour plots for the final grids of the various runs are too
similar to be distinguished among by the human eye, accuracy is expressed via the error
norm given above. No time stepping precedes the solution of the steady-state problem, and
each adaption requires only a single steady-state solve. A Newton tolerance of 1× 10−6,
difficult to attain in practical applications, is employed here to ensure that the posed systems
are solved to high accuracy; any change in solution accuracy is a result of method parameter
variation. Adaption terminates either when the termination criterion is satisfied or when the
number of grid points exceeds 50,000. While parameter settings could have been easily
chosen to produce numerical experiment runs requiring fewer than 50,000 points, such runs
either would have produced obviously inadequate results (for example, with largeεequi) or
would have required so few adaptions that there would have been little timing and error data
with which comparisons among the various runs could have been made. In fact, for more
accurate timing data, each case is run 10 times and the computing times are averaged.

5.1.1. Effect of LRR Method Parameter Variation.Three parameters of the LRR meth-
od are now varied, one at a time, to examine their effect and purpose, beginning withNlayer,1,
the parameter controlling the number of layers of refined cells added around previously
refined cells. Final grids produced with different values of the layering parameterNlayer,1

are shown in Fig. 10, starting with the case of no layering. As the number of layers increases,
the interfaces between the variously refined regions of the grids fall further and further away
from the solution’s high activity areas, as anticipated. In Fig. 11, a log–log plot of error as a
function of the reciprocal of the smallest grid spacing,pth-order accuracy is reflected by a
slope of−p. Therefore, it is apparent that for an adequate amount of layering (in this case,
Nlayer,1≥ 2), the LRR method provides second-order accuracy, indicated by the slope of−2
on the plot. As predicted, the error indeed decreases as the number of layers increases. The
refined region is sufficiently wide in Fig. 10c, as compared to the region of high activity,
and the final error is smallest, so the parameter settingNlayer,1= 3 is retained.

The second parameter to be studied isNsmth, the number of weight function smoothing
passes. It is expected that the more the weight functions are smoothed, the more evenly



FIG. 10. Final LRR grids for the rectangular heated plate problem, withNlayer,1= 0 (a); Nlayer,1= 1 (b);
Nlayer,1= 2 (c); Nlayer,1= 3 (d); andNlayer,1= 4 (e).
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FIG. 11. Parameter study using rectangular heated plate problem: variation in the number of added refinement
layers, as controlled byNlayer,1. Numbers in parentheses refer to the LRR grid adaption number.

spatially distributed they should become. Thus, when they are used as an indicator for grid
refinement, the regions of high gradients and curvatures should be perceived by the method
as being less sharp, and, consequently, fewer points should be added. In practice, however,
the number of points does not vary greatly from one trial to the next. This behavior can
be explained by the current setting ofNlayer,1= 3, which encourages point addition and
thus masks any effect of varying the number of weight function smoothing passes. This
evidence indicates interaction among various method parameters; the alteration of any single
parameter may or may not have a noticeable effect, depending upon other parameter settings.
Figure 12 again illustrates the second-order accuracy of the LRR method and the very small
differences in overall error asNsmth is changed. Parameter settingNsmth= 10 is retained.

The third and final aspect of the LRR method to be examined is the choice of discretiza-
tions used on the regular interior points and external boundary points, combined with the
internal boundary point treatment. Not every combination is a viable one; for example,
single-scale stencils at regular interior grid points can be used only in conjunction with
interpolants at internal boundary points. For the current application, the number of points in
a given adaption is observed to be independent of the discretization and the internal bound-
ary point treatment, simply because no major solution differences among the methods are
apparent for the first few adaptions.

Three of the five curves in Fig. 13 display results obtained with multiple-scale stencils and
various internal boundary point treatments; the remainder cover single-scale stencils used
with interpolants—schemes representative of those prominent in the local grid refinement
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FIG. 12. Parameter study using rectangular heated plate problem: variation in the number of smoothing passes,
Nsmth. Numbers in parentheses refer to the LRR grid adaption number.

literature. Once again, the plot illustrates that the LRR method produces second-order
accuracy, as shown by the−2 slope of the data, during the first four adaptions. In Adaption
5, the error data from the runs employing multiple-scale stencils in combination with either
pseudo-nine-point stencils (curve A) or five-point interpolants (curve B) continue to fall
on the line of slope−2. However, error measurements for the trial using multiple-scale
discretizations with two-point interpolants at internal boundary points (curve C) begin to
deviate from the baseline of slope−2; this behavior can be attributed to the lower order of
the two-point interpolant, as compared with the five-point interpolant.

The largest deviation from the baseline is displayed by the two trials using single-scale
interpolants (curves D and E). The Adaption 5 error for these trials is almost 40% larger
than the Adaption 5 error for curves A and B, and the line segment connecting the Adaptions
4 and 5 data for curves D and E has an approximate slope of−1.4. These results are not
surprising, since the grid spacings used in the single-scale discretizations can be as large
as1x and1y of the base grid, resulting in poor accuracy, despite the fact that the single-
scale stencils are equispaced. Another drawback of the single-scale solutions is that they
require several Newton iterations, increasing their execution time, versus only one Newton
iteration for the multiple-scale solutions. Thus, multiple-scale stencils are preferred and
are therefore employed in all remaining LRR runs, as are pseudo-nine-point stencils at the
internal boundary points.
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FIG. 13. Parameter study using rectangular heated plate problem: variation in discretizations and internal
boundary point treatments. Numbers in parentheses refer to the LRR grid adaption number.

5.1.2. Comparison of LRR and traditional gridding methods.The base case for the
LRR method is now compared with the solutions computed on two series of globally refined
rectangular grids: equivalent tensor product (ETP) grids and fully refined (FR) grids. The
ETP grids result from extending all grid lines of a given LRR grid out to the edges of the
domain; such grids represent those available to researchers using adaptive globally refined
rectangular grids. The FR grids result from using the smallest grid spacing in a given LRR
grid to create a uniform, equispaced grid. Both the ETP and FR grids thus contain exactly
the same refinement areas as the corresponding LRR grids, since a given LRR grid is a
subset of the ETP grid, which, in turn, is a subset of the FR grid. In the ETP and FR trials,
the entire solution method is the same as that for the LRR trials (i.e., Newton’s method
with nested BiCG-STAB linear algebra solver). The reported times are 10-run averages and
include both the time required to interpolate a guess onto the new grid from the solution
of the previous grid and the time to form and solve the governing equation on the new
grid.

Table I contains the results from the three different gridding methods. The LRR trial’s
errors are of comparable magnitude to those of the ETP and FR trials, with the LRR grids
having slightly smaller errors throughout. In the earlier adaptions, the LRR method requires
similar solution times per point, as compared to the FR trials, while later LRR adaptions
require considerably more time per point than the FR trials. The ETP trials take consistently
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TABLE I

Rectangular Heated Plate: Comparison of LRR Method with Traditional Gridding Methods

Method Adaption Npts Error t (s) t/Npts

LRR 0 126 0.78641 0.08 0.00063
1 304 0.05907 0.14 0.00046
2 906 0.01250 0.54 0.00060
3 2,795 0.00303 1.88 0.00067
4 9,353 0.00075 11.41 0.00122
5 33,719 0.00021 75.60 0.00224

ETP 0 6× 21= 126 0.78641 0.08 0.00063
1 11× 32= 352 0.05910 0.37 0.00105
2 21× 54= 1,134 0.01251 0.98 0.00086
3 41× 93= 3,813 0.00304 3.71 0.00097
4 81× 167= 13,527 0.00076 13.23 0.00098
5 161× 321= 51,681 0.00023 50.78 0.00098

FR 0 6× 21= 126 0.78641 0.08 0.00063
1 11× 41= 451 0.05910 0.28 0.00062
2 21× 81= 1,701 0.01251 1.14 0.00067
3 41× 161= 6,601 0.00304 5.27 0.00080
4 81× 321= 26,001 0.00077 23.40 0.00090
5 161× 641= 103,201 0.00026 87.60 0.00085

longer per point than the FR trials, most likely because the ETP grids contain cells of extreme
aspect ratios which worsen the conditioning of the Jacobian matrix, leading to slower
convergence. The overall execution time is, of course, smallest for each LRR adaption as
compared to the corresponding ETP and FR solutions, because of the small number of
grid points in the LRR trials. The Adaption 5 LRR grid, for example, contains 0.65 and
0.33 times as many points as its ETP and FR counterparts, respectively, but produces no
significant difference in accuracy.

The implementations of LRR, ETP, and FR methods require the following storage, ex-
pressed in terms of the number of dependent variables per grid point and the total number
of points:

StorageLRR =
(
9N2

dep+ 21Ndep+ 26
)
Npts

(16)
StorageETP or FR=

(
9N2

dep+ 17Ndep+ 10.375
)
Npts.

In each case, the leading term represents the memory required for the Newton’s method
Jacobian matrix, and when there are more than one or two unknowns per point, this term
dominates. For the current problem,Ndep= 1, resulting in

StorageLRR = 56Npts
(17)

StorageETP or FR= 36.375Npts.

Therefore, when an LRR grid contains fewer than 0.65 times as many points as the corre-
sponding ETP or FR grid (as is the case for some of the above trials), the solution process
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FIG. 14. Physical configuration for the square cavity problem.

on the LRR grid requires less memory overall. Significantly greater storage savings for the
LRR method are demonstrated via the remaining application problems.

5.2. Thermally and Dynamically Driven Square Cavity Flow

The second problem to be investigated is that of flow within a differentially heated square
cavity, with either a stationary or a moving lid. This problem has been widely studied for
several different combinations of Grashof, Prandtl, and Reynolds numbers (see, for example,
[15, 22, 33, 36], and references therein). The cavity, shown in Fig. 14, is filled with air
(Prandtl number Pr= 0.72), and it has two insulated horizontal walls and two uninsulated
vertical walls. The left and right vertical walls are maintained at low and high temperatures,
respectively, which will set into motion a counterclockwise circulation, as long as the lid
velocity is zero. When the lid is moving to the right, the thermally driven circulation must
compete with the dynamically forced clockwise circulation.

The steady-state flow is governed by four coupled nonlinear equations, involving un-
knowns of horizontal and vertical velocity (u andv), vorticity ω, and temperatureT ; the
derivation can be found in [22]. Kinematic viscosityν and thermal conductivityλ are as-
sumed constant. The equations are nondimensionalized such that the domain becomes a
unit square and the temperature varies from zero to one, producing

∂2u

∂x2
+ ∂

2u

∂y2
= −∂ω

∂y
,

∂2v

∂x2
+ ∂

2v

∂y2
= ∂ω

∂x
,

∂

∂x
(uω)+ ∂

∂y
(vω) = ∂2ω

∂x2
+ ∂

2ω

∂y2
+Gr

∂T

∂x
, (18)

∂

∂x
(uT)+ ∂

∂y
(vT) = 1

Pr

[
∂2T

∂x2
+ ∂

2T

∂y2

]
,

where

Gr= gβ(THOT− TCOLD)L3

ν2
, Pr= ρνcp

λ
, and Re= ρVLID L

ν
.
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Variablesu, v, ω, andT are now dimensionless. The boundary conditions are simple: no-
slip conditions on all walls; definition of vorticity invoked along the entire boundary; and
temperatures are either prescribed directly (vertical walls) or else the fluxes vanish (hor-
izontal walls). Physical intuition indicates counterclockwise flow, at least when the lid is
stationary, which is reflected in the initial guess for the velocity fields, as follows:

u =
√

2 Gr1/3 sin(πx) cos(πy)
(19)

v = −
√

2 Gr1/3 cos(πx) sin(πy).

Vorticity is initially chosen to be zero, and temperature is guessed to vary linearly between
the vertical boundaries.

This second application problem does not have an analytical solution, but it does provide
a more realistic application for the gridding methods. The effects of adapting based on
different variables are demonstrated: first, adaption is done based on gradients ofω only,
then on gradients ofω andT , and finally on gradients of all four variables (for brevity, the
latter results are not shown). For all of the following results, many of the method parameter
settings are the same as those for the previous application problem, with a few exceptions.
The number of weight function smoothing passesNsmth is set to 2, because the gradients
are not as sharp as those for the previous problem. Now, a maximum of five adaptions
is allowed, although the maximum number of grid points (for LRR) is still 50,000. For
all cases, the initial grid is an equispaced 41× 41 mesh, with1x=1y= 0.025. On each
adaptive grid, the solution process consists of 150 adaptively chosen time steps, followed
by one steady-state solve. Although the time steps are not critical to achieving convergence
in several of the adaptions, standardization of the method is necessary in order to compare
equal amounts of computation among the methods and from one adaption to the next. To
lower execution times, the Jacobian matrix is evaluated only at every 10th time step.

5.2.1. Comparison of LRR and traditional gridding methods for the case of natural
convection: Ra= 104. For the problem of thermally driven flow in a square cavity with a
stationary lid (Re= 0), the solution strategy includes a single steady-state solve on the initial
grid, and the Newton tolerance for all cases is 1× 10−5. There can be no error measurement
since the analytical solution is not known. However, a chosen physical quantity, such as
the maximum absolute value of vorticity, denoted by|ω|max, can be monitored for each set
of results. The Rayleigh number (Ra=Gr ·Pr) is chosen as 104, which allows comparison
with published data [15, 22]; note that some data [15] have been adjusted so that they are
in accordance with the current nondimensionalization.

Figure 15 displays profiles ofu and v along the cavity vertical and horizontal mid-
planes, for an LRR Adaption 5 grid and the corresponding ETP and FR grids, along with
a benchmark solution [15] and data from a vorticity–velocity formulation [22]. The latter
two are both calculated on equispaced rectangular grids. While the LRR data shown here
are from adapting based onω, there are no visible differences between these solutions and
those obtained on any of the final adapted grids in which different adaption variables were
chosen. The figure shows excellent agreement among the different datasets. As expected, a
counterclockwise flow pattern has developed.

Figure 16 shows vorticity contours calculated on LRR Adaption 5 (adaption based on
ω); it is clear that refinement indeed occurs in regions of rapid change ofω. That the flow
is primarily circulating, with boundary layers along the walls, is evidenced by the large
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FIG. 15. Profiles ofu andv along the cavity vertical and horizontal mid-planes (x= 0.5 andy= 0.5, respec-
tively) for Ra= 104 (natural convection).

FIG. 16. Numerical isopleths of vorticity (ω) for Ra= 104 (natural convection) (a), calculated on LRR Adap-
tion 5, formed by adapting based onω (b).
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FIG. 17. Numerical isotherms for Ra= 104 (natural convection) (a), calculated on LRR Adaption 5, formed
by adapting based onω andT (b).

negative vortex appearing near the center and the smaller positive vortices along each of
the four walls. Figure 17 displays isotherms obtained on LRR Adaption 5 (adaption based
onω andT), along with the grid itself. The grid undergoes refinement along the walls to
resolve the boundary layers, and additional refinement occurs in regions where the vorticity
and/or temperature is rapidly changing.

Table II presents the results obtained by adapting based onω using the LRR method,
as well as results on corresponding ETP and FR grids. Immediately apparent is the fact
that the LRR|ω|max values are extremely close to the ETP and FR values: within 2% for
Adaption 1 and within 1% for all subsequent adaptions. This high degree of accuracy is

TABLE II

Square Cavity with Ra = 104 (Natural Convection)

Adaption on ω: Comparison of LRR Method with Traditional Gridding Methods

Method Adaption Npts |ω|max t (s) t/Npts

LRR 0 1,681 424.5 44 0.026
1 3,063 508.3 333 0.109
2 4,949 547.1 767 0.155
3 5,919 547.8 671 0.113
4 6,585 547.6 686 0.104
5 7,143 545.6 830 0.116

ETP 0 41× 41= 1,681 424.5 44 0.026
1 65× 81= 5,265 500.2 592 0.112
2 95× 139= 13,205 552.6 2358 0.179
3 95× 145= 13,775 552.5 794 0.058
4 97× 149= 14,453 552.7 1022 0.071
5 113× 155= 17,515 544.0 2545 0.145

FR 0 41× 41= 1,681 424.5 44 0.026
1 81× 81= 6,561 498.9 706 0.108

2, 3, 4, 5 161× 161= 25,921 543.2 3618 0.140
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TABLE III

Square Cavity with Ra = 104 (Natural Convection)

Adaption on ω and T: Comparison of LRR Method with Traditional Gridding Methods

Method Adaption Npts |ω|max t (s) t/Npts

LRR 0 1,681 424.5 44 0.026
1 3,181 508.6 347 0.109
2 5,371 548.8 816 0.152
3 8,189 550.9 994 0.121
4 11,123 546.2 1,473 0.132
5 15,299 568.6 2,660 0.174

ETP 0 41× 41= 1,681 424.5 44 0.026
1 65× 81= 5,265 500.2 617 0.117
2 95× 141= 13,395 552.6 2,412 0.180
3 97× 161= 15,617 542.2 2,026 0.130
4 153× 161= 24,633 543.4 2,263 0.092
5 169× 239= 45,461 572.3 8,853 0.195

FR 0 41× 41= 1,681 424.5 44 0.026
1 81× 81= 6,561 498.9 706 0.108

2, 3, 4 161× 161= 25,921 543.2 3,618 0.140
5 321× 321= 103,041 567.4 20,851 0.202

achieved on LRR grids with 0.58, 0.37, 0.43, 0.46, and 0.41 as many points as the traditional
ETP grids, for Adaptions 1 through 5, respectively; the LRR grids have 0.47, 0.19, 0.23,
0.25, and 0.28 as many points as the equispaced FR grids. For any given adaption, the LRR
per-point solution times are of the same order as those for the corresponding ETP and FR
grids, with the only exceptions occurring when the ETP grids do not change greatly from
one adaption to the next (and thus those solutions converge more quickly). The overall LRR
solution times are much shorter than those for the ETP and FR runs.

Whenω andT are the adaption variables, as in Table III, there is again very little difference
among the|ω|max values obtained using the LRR, ETP, and FR grids. For Adaptions 1
through 3, the LRR values are within 2% of those obtained on the corresponding ETP and
FR grids, and for Adaptions 4 and 5 the values differ by less than 1%. At the same time, the
LRR grids have significantly fewer points than the other grids; for example, the Adaption 5
grid has 0.34 times as many points as its ETP counterpart and 0.15 times as many points
as its FR counterpart. Because the LRR per-point solution times are comparable to, or
sometimes even faster than, the per-point solution times on the ETP and FR grids, the LRR
method finds the solution much more quickly than the other methods. Finally, the LRR grids
(and thus, the ETP and FR grids) contain more points than whenω was the only adaption
variable, which is to be expected.

Adaption has also been performed on all variables simultaneously, and those results dis-
play characteristics similar to the above (a very accurate representation of|ω|max, while
using a fraction of the number of points used in the corresponding ETP and FR grids).
Regardless of the adaption variable(s) chosen, plots of the final solutions are indistinguish-
able from one another. Memory requirements are examined at the end of the next section.

5.2.2. Comparison of LRR and traditional gridding methods for the case of mixed con-
vection: Ra= 104 and Gr/Re2= 0.5. Because the problem of thermallyanddynamically
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driven flow in a square cavity is more challenging than the previous one, the solution strat-
egy now includes 150 time steps on the initial grid, as well as on all subsequent grids. The
reader is reminded that these time steps are not actually needed for convergence on some
of the earlier adaptions, but that valid comparisons require standardization of the amounts
of calculation. The Newton tolerance is 1× 10−4, except for some ETP computations (in-
dicated by table footnotes) which are solved to 2× 10−4; these would have required further
time stepping in order to have met the original tolerance. As in the natural convection case,
there is no analytical solution, but a physical quantity (here,vmax, since|ω|max is infinite) is
used to gauge solution accuracy. The choices of Ra= 104 and Gr/Re2= 0.5 (Re= 166.667)
permit direct comparison with published data [22].

Some minor differences exist among the solutions found on grids generated via different
adaption variables, but the general shapes of the solution profiles are the same. Figure 18
displays the profile ofu along the cavity’s vertical mid-plane, using results from LRR
Adaption 4 based onω andT , solutions from the corresponding ETP and FR runs, as well
as data from [22]. (Adaption 4 results are illustrated instead of Adaption 5 results, simply
because the FR calculation corresponding to LRR Adaption 5 exceeds the 2 GB RAM limit.)
The datasets show good agreement, given the sharpness of the gradients as compared to
the natural convection case. It is evident that the counterclockwise circulation generated by
buoyancy effects of the differentially heated vertical walls survives only in the lower part
of the cavity, while the rapid movement of the top wall controls flow in the upper part.

FIG. 18. Profiles ofu along the cavity vertical mid-plane (x= 0.5) for Ra= 104 and Gr/Re2= 0.5.



714 BENNETT AND SMOOKE

FIG. 19. Numerical isopleths of vorticity (ω) for Ra= 104 and Gr/Re2= 0.5 (a), calculated on LRR Adap-
tion 5, formed by adapting based onω (b). Close-up of upper left corner of domain (c) displays base grid plus five
levels of refinement.

Figure 19 displays vorticity contours calculated on LRR Adaption 5 (adaption based on
ω), along with the grid itself. As expected, the grid is highly refined in the upper left and right
corners, and the close-up in (c) shows the presence of the base cell size plus five refinement
levels. Figure 20 shows isotherms calculated on LRR Adaption 5 (adaption based onω and
T), and effect of the cavity lid motion is indeed apparent. The grid, shown in (b), displays
refinement in the regions of highω andT activity, and it again comprises the base grid plus
five levels of refinement. Although not shown here, results from adapting based on all four
dependent variables display similar trends.

Table IV presents the results from LRR adaptions performed based onω only, along
with results from corresponding ETP and FR grids. Excellent agreement (within 1% from
Adaption 2 on) is observed among thevmax value on each LRR grid and its ETP and FR
counterparts, but the values are ever-increasing, symptomatic of the fact that the adaption
process is not complete by Adaption 5. The LRR Adaption 5 grid contains roughly one-third
as many points as its ETP counterpart, and for Adaptions 1 through 5, respectively, the LRR
grids contain only 0.38, 0.14, 0.05, 0.02, and 0.01 times as many points as the corresponding
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FIG. 20. Numerical isotherms for Ra= 104 and Gr/Re2= 0.5 (a), calculated on LRR Adaption 5, formed by
adapting based onω andT (b).

equispaced FR grids. Comparisons of timings with ETP grids for later adaptions are not
valid because of the looser ETP tolerance, which requires less computational effort. The
difficulty experienced by these ETP runs in meeting the original 1× 10−4 tolerance most
likely stems from cells of extremely high or low aspect ratio, present in the ETP grids only
and leading to poorly conditioned Jacobian matrices. LRR and FR per-point timings are

TABLE IV

Square Cavity with Ra = 104 and Gr /Re2 = 0.5

Adaption on ω: Comparison of LRR Method with Traditional Gridding Methods

Method Adaption Npts vmax t (s) t/Npts

LRR 0 1,681 22.07 128 0.076
1 2,517 21.34 284 0.113
2 3,593 29.26 333 0.093
3 5,074 35.57 540 0.106
4 7,792 40.72 1,002 0.129
5 15,451 45.21 3,895 0.252

ETP 0 41× 41= 1,681 22.07 128 0.076
1 77× 55= 4,004 23.15 429 0.107
2 112× 72= 8,064 29.13 825 0.102
3 146× 98= 14,308 35.73 1,626 0.114
4 191× 126= 24,066 41.22a 2,776a 0.115a

5 265× 167= 44,255 45.59a 5,562a 0.126a

FR 0 41× 41= 1,681 22.07 128 0.076
1 81× 81= 6,561 22.06 663 0.101
2 161× 161= 25,921 29.15 2,637 0.102
3 321× 321= 103,041 35.76 14,770 0.143
4 641× 641= 410,881 41.17 26,608 0.065
5 1281× 1281= 1640,961 —b —b —b

a Converged to a tolerance of only 2× 10−4.
b Size of problem exceeded 2 GB RAM limit.



716 BENNETT AND SMOOKE

TABLE V

Square Cavity with Ra = 104 and Gr /Re2 = 0.5

Adaption on ω and T: Comparison of LRR Method with Traditional Gridding Methods

Method Adaption Npts vmax t (s) t/Npts

LRR 0 1,681 22.07 128 0.076
1 3,275 23.77 372 0.114
2 4,881 29.22 455 0.093
3 7,833 35.62 830 0.106
4 13,403 40.81 1,866 0.139
5 24,959 45.36 4,597 0.184

ETP 0 41× 41= 1,681 22.07 128 0.076
1 77× 78= 6,006 22.04 626 0.104
2 117× 97= 11,349 29.16 1,077 0.095
3 157× 118= 18,526 35.75a 1,785a 0.096a

4 212× 187= 39,644 41.20a 4,302a 0.109a

5 308× 244= 75,152 45.79a 10,145a 0.135a

FR 0 41× 41= 1,681 22.07 128 0.076
1 81× 81= 6,561 22.06 663 0.101
2 161× 161= 25,921 29.15 2,637 0.102
3 321× 321= 103,041 35.76 14,770 0.143
4 641× 641= 410,881 41.17 26,608 0.065
5 1281× 1281= 1,640,961 —b —b —b

a Converged to a tolerance of only 2× 10−4.
b Size of problem exceeded 2 GB RAM limit.

roughly comparable in all adaptions except Adaption 4, in which the LRR per-point timing
is nearly twice as large. Comparison of LRR Adaption 5 results cannot be made with the
corresponding FR grid, since the FR problem is too large for the available computational
resources. Overall, the LRR runs consistently require a small fraction of the CPU time of the
ETP and FR runs, while maintaining accuracy to within 1%, as measured by values ofvmax.

Whenω andT are the adaption variables, as in Table V, the values ofvmax produced
using the LRR method again mirror those obtained on the corresponding ETP and FR grids,
to within 1% from Adaption 2 on. (The continual increase ofvmax with grid number again
reflects the artificially imposed termination of the adaption process after the fifth grid.)
This excellent agreement is achieved on LRR grids with 0.50, 0.19, 0.08, 0.03, and 0.02
times as many points as their FR counterparts, with much shorter overall solution times for
LRR. As before, the FR counterpart of LRR Adaption 5 is too large for the available 2 GB
RAM workstation. Also, because of ETP convergence problems, timing comparisons can
be made only for the adaptions in which the tolerances are the same among LRR, ETP, and
FR; in these cases, the per-point solution times are comparable. In general, the LRR method
consumes much less CPU time than the other methods; for example, LRR Adaption 4 takes
0.07 as much time as its equispaced FR counterpart.

The storage amounts needed for each of the methods, presented in Eq. (18), are written in
terms ofNdep, the number of dependent variables per point, andNpts, the number of points.
When Ndep= 4, as in the square cavity problem (for either mixed or natural convection),
the requirements simplify to

StorageLRR = 254Npts
(20)

StorageETP or FR= 222.375Npts,
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which do not differ as widely as in the rectangular heated plate problem. Whenever an
LRR grid has fewer than 0.88 times as many points as its ETP or FR counterparts, the
LRR solution process consumes less memory than the ETP or FR solution. Therefore,
all LRR solutions presented above for the two types of square cavity flow not only consume
much less CPU time, but LRR memory usage ranges from approximately 50% down to, in
some cases, 1% that of the traditional gridding methods, as represented by the ETP and FR
grids.

5.3. Rich Axisymmetric Laminar Bunsen Flame with Complex Chemistry

The third problem to which the LRR solution-adaptive gridding method is applied is
that of a rich full-chemistry axisymmetric laminar Bunsen flame, which is assumed to
have reached a steady state at atmospheric pressure. Like the square cavity flow, this third
application does not have an analytical solution, but it is again a realistic problem and
poses a difficult challenge for adaptive gridding techniques. In general, the major species
mass fraction gradients in axisymmetric laminarpremixedflames are an order of magnitude
greater than those in axisymmetric laminardiffusionflames. Moreover, theminor species
gradients in premixed flames are larger by yet another order of magnitude. The sharpness
of these gradients, as well as the fact that they all occur in the same spatial region (i.e., near
the flame front), make the axisymmetric laminar Bunsen flame an ideal subject for adaptive
gridding.

The burner consists of a central jet, from which a homogeneous methane–air mixture
issues, and a surrounding concentric jet, from which pure air flows. The composition of
the methane–air mixture is 11.5 molar percentage CH4 and 88.5 molar percentage air,
which results in an overall equivalence ratio of8= 1.243. Because the fuel-to-oxidizer
ratio is rich, the premixed flame which forms atop the coflowing jets (often referred to as
a “Bunsen cone” [30]) is accompanied by a diffusion flame “halo” which forms further
downstream. As illustrated in Fig. 21, the premixed fuel–air jet’s inner radius isr I = 0.5 cm

FIG. 21. Physical configuration for the axisymmetric Bunsen flame.
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and its wall thickness iswJET= 0.05 cm. The coflowing jet’s inner radius isrO= 3.0 cm,
marking the radial extent of the computational domain. Computations are performed in
a two-dimensional domain with axial boundaries atz= 0 andz= 25 cm; when choosing
boundary conditions, the latter can be considered “infinitely” far from the flame, since the
flame length does not exceed 1 or 2 cm.

The velocity profile across the inner jet exit is parabolic, with the average axial veloc-
ity vz,I = 50 cm s−1. Thevz profile across the outer jet exit increases from an innermost
minimum of zero tovz,O= 50 cm s−1, simulating a plug flow with a thick inner boundary
layer [5]. Across the entire burner surface, radial velocityvr = 0 cm s−1, while bothvr and
vz vanish across the thickness of the jet wall. The Reynolds number within the inner jet
is approximately 494. The present model employs a C1 chemical mechanism involving 16
species and 46 reactions [43]. All thermodynamic, chemical, and transport properties are
evaluated using subroutine libraries [23]. Forward reaction rate constants are determined
from modified Arrhenius expressions containing exponential temperature dependence, and
reverse rate constants are calculated from the corresponding forward rate constants and
the equilibrium constants [29]. The present model also includes an optically thin radiation
submodel [18, 25, 26].

As detailed in [4, 5], the governing equations are formulated via a vorticity–velocity ap-
proach [19], in which the pressure gradient is eliminated by taking the curl of the momentum
equation. Advantages of this formulation, as well as further examples of its application to
combustion problems, may be found in [4, 5, 19] and the references therein. The governing
equations, not repeated here, are a set of 20 highly nonlinear, strongly coupled, elliptic
partial differential equations, originally derived from the conservation equations for mass,
momentum, energy, and individual species mass. They involve 20 dependent variables at
each grid point: radial velocityvr ; axial velocityvz; vorticity ω; temperatureT ; and mass
fractionsY of the 16 species. The boundary conditions, aside from the highervz values
for the inner and outer jets, are the same as those for the rich flame in [5]. Because of the
governing equations’ extreme nonlinearity, the full-chemistry solution on the starting grid
is formed with the aid of a one-step chemistry starting estimate and a time-relaxation pro-
cess (see [4, 5, 41]). Execution times for all cases computed herebeginfrom the converged
starting-grid solution, and all are normalized by the time taken to reconverge initially on
that solution (i.e., the Jacobian evaluation time).

For this application problem, the effects of adapting based on different variables are
displayed: first, adaption is performed based on gradients ofYCH4 only (sharp gradients
of YCH4 occur at the premixed flame front), then on gradients ofYCH4 andT , and finally
on gradients of all 20 variables (for brevity, the latter results are not shown). Many of the
parameter settings are retained from the previous problems, with the following differences.
Because of the sharp gradients and the tendency of the flame front to migrate (during the
earlier adaptions),Nsmth is reset to 10 andNlayer,1 is set to 5. For the 2 GB RAM IBM
RS/6000-590 workstation used, the limiting number of grid points for this 20-variable
problem is 62,000. For all cases, the initial grid is a nonequispaced tensor product mesh
of size 58× 70. Knowledge that a flame will form somewhere above the inner jet is used
to impose a mesh which is uniformly spaced with1r = 0.02 cm for 0.00≤ r ≤ 0.80 cm,
with increasingly larger spacing for 0.80≤ r ≤ 3.00 cm; it is also uniformly spaced with
1z= 0.02 cm fromz= 0.00 toz= 0.80 cm, with wider spacing for 0.80≤ z≤ 25.00 cm.
(A small enough spacing is necessary to sustain the flame, but an equispaced FR mesh
cannot be used because it would contain too many points.)
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FIG. 22. Along the axis of symmetry,YCH4 (a) andYOH (b) as functions of distance from the burner surface,
calculated on various grids, for the axisymmetric Bunsen flame. Only a portion of the domain is shown.

For each noninitial grid, the solution iterate is advanced in time via 200 adaptively chosen
time steps, beginning with1t = 1× 10−8. As before, these time steps are notrequiredon
every grid to ensure convergence, but they are taken anyway to standardize the amount of
computation and validate comparisons. In practice, the LRR grids usually require only 50
to 100 time steps to bring the solution iterate into the convergence domain of the steady-
state Newton solve, but the ETP grid solutions oftendo require the full 200 time steps. If
certain criteria are met, each formed Jacobian is used for three successive time steps. The
time steps on each noninitial grid are followed by steady-state Newton’s method, with the
final solution computed to a tolerance of 1× 10−4, which is quite reasonable for a practical
combustion problem.
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FIG. 23. In the axisymmetric laminar Bunsen flame,YCH4 isopleths have been computed on a series of LRR
adapted grids, formed withYCH4 as the adaption variable. Shown is the region near the inner jet exit (only a portion
of the computational domain but the part in which all of the adaption occurs), for (a) Adaption 0, (b) Adaption 1,
(c) Adaption 2, and (d) Adaption 3. A close-up of the Adaption 3 grid is displayed in (e).

5.3.1. Comparison of LRR and traditional gridding methods.As in the square cavity
flow problem, there can be no error measurement since the analytical solution is not known.
However, the flame lengthL f , defined as thez-axis position at whichYCH4 first drops below
a preset small value (10−4), is monitored. Althoughvr , vz, ω, T , and the mass fractions
of all 16 chemical species have been calculated for each run, only results forT , YCH4, and
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FIG. 23—Continued

YOH are presented in order to give a flavor of the degree of problem difficulty and the level
of solution accuracy. Readers interested in the physical interpretation of results for similar
flames may pursue [4, 5].

The acute need for adaptive gridding in modeling the axisymmetric Bunsen flame is
apparent from Fig. 22, which depictsYCH4 andYOH along the flame’s axis of symmetry as
functions of axial distance above the burner. In Fig. 22a, at the premixed flame front, the
YCH4 profile plummets from 99% of its peak value (atz= 0.6300 cm) to less than 1% of
peak (atz= 0.6950 cm) over an axial distance of only 0.065 cm. This rapid decrease occurs
not only on the centerline of the flame but also across the entire surface of the Bunsen cone.
For each of the four datasets shown, the flame thickness is spanned axially by 14 grid points,
and in LRR Adaption 3 (not shown), it is covered by 27 points. To attain the latter resolution
with a fully refined grid would require over 12 million points! In Fig. 22b, theYOH profile
increases steeply near the region in which theYCH4 profile undergoes its rapid drop. Overall,
theYOH profile contains two peaks: a spike located near 0.80 cm, signifying the presence
of a premixed flame front; and a gradual rise and fall centered around 2.0 cm, indicating
the diffusion flame halo. Not unexpectedly, theYOH gradients in the premixed flame are an
order of magnitude larger than those in the diffusion flame. Through examination of the
governing equations’ truncation errors [5], it can be determined that, in order to compute
flame positions correctly, the premixed flame front requires significantly higher resolution



722 BENNETT AND SMOOKE

TABLE VI

Rich Axisymmetric Laminar Bunsen Flame with Complex Chemistry

Adaption on YCH4: Comparison of LRR Method with Traditional Gridding Methods

Method Adaption Npts L f (cm) t t/Npts

LRR 0 4,060 0.520 1.0 0.0002
1 6,522 0.640 37.9 0.0058
2 14,499 0.700 95.6 0.0066
3 41,802 0.738 384.6 0.0092

ETP 0 58× 70= 4,060 0.520 1.0 0.0002
1 95× 104= 9,880 0.650 59.6 0.0060
2 160× 183= 29,280 0.730 218.2 0.0075
3 284× 347= 98,548 —a —a —a

FR 0 151× 1251= 188,901 —a —a —a

1 301× 2501= 752,801 —a —a —a

2 601× 5001= 3,005,601 —a —a —a

3 1201× 10001= 12,011,201 —a —a —a

a Size of problem exceeded 2 GB RAM limit.

than the diffusion flame. Thus, all profiles in Figs. 22a and 22b coincide at the premixed
front, where they have the same high level of resolution, with minor differences apparent
in the post-diffusion-flame region, where dataset resolutions differ.

Figure 23 illustrates a series of LRR grids, portions of which are shown in the right
halves of (a) through (d), generated via adaption onYCH4, as well as the corresponding
YCH4 isopleths, whose mirror images are shown in the left halves. The isopleths become
smoother and better resolved as the grid is progressively refined, and it is indeed clear
that refinement is occurring in the region of highYCH4 activity. The Adaption 3 grid, for
example, appearing in (d) and in greater detail in (e), contains the base grid plus three levels
of refinement. The most obvious feature, however, as the grid undergoes refinement, is that
the Bunsen flame’s lengthL f increases from 0.520 cm on the initial grid, to 0.640 and 0.700
cm on successive grids, ending with 0.738 cm on the LRR Adaption 3 grid. Therate of

TABLE VII

Rich Axisymmetric Laminar Bunsen Flame with Complex Chemistry

Adaption on YCH4 and T: Comparison of LRR Method with Traditional Gridding Methods

Method Adaption Npts L f (cm) t t/Npts

LRR 0 4,060 0.520 1.0 0.0002
1 10,087 0.640 60.2 0.0060
2 29,262 0.710 200.8 0.0069

ETP 0 58× 70= 4,060 0.520 1.0 0.0002
1 115× 132= 15,180 0.650 84.5 0.0056
2 225× 260= 58,500 0.675 341.8 0.0058

FR 0 151× 1251= 188,901 —a —a —a

1 301× 2501= 752,801 —a —a —a

2 601× 5001= 3,005,601 —a —a —a

a Size of problem exceeded 2 GB RAM limit.
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increase, however, slows as the grids become more refined, indicating that a threshold level of
refinement exists; on grids refined beyond this level,L f will remain unchanged. (Computer
memory constraints prevented the computation of LRR solutions beyond Adaption 3.) This
phenomenon of increasing flame length is simply explained in [4, 46] for a Bunsen flame
modeled with one-step chemistry, and a similar explanation is given in [5] for Bunsen flames
with complex chemical mechanisms. These references conclude that the most accurateL f

is that found on the most refined grid (in this case, that of Adaption 3).
Table VI presents the results obtained by adapting based onYCH4 using the LRR method,

as well as results on corresponding ETP grids; the FR grids contained far too many points,
exceeding the available computational resources. Immediately obvious is the fact that, even
for the ETP grids, the flame lengthL f increases as the mesh spacing becomes finer, with
the rate of increase progressively lessening. As an indication of the precision of the LRR
method, the values forL f computed on the LRR Adaptions 1 and 2 grids are within 1.5
and 4.1% of their ETP counterparts, with the LRR grids containing 0.66 and 0.50 as many
points as their ETP counterparts. (The LRR Adaption 3 grid contains 0.42 as many points as
its too-large ETP counterpart.) It is no surprise that the FR grids exceed available memory,
since the LRR grids contain 0.02, 0.009, 0.005, and 0.003 times as many points as their
FR counterparts! The LRR solution times are roughly half those of the corresponding
ETP grids, with the per-point solution times smallest for the LRR grids. In Table VII, for
adaption based on bothYCH4 andT , similar behaviors are observed, except that the per-point
timings for the LRR grids are slightly longer than those for the corresponding ETP grids,
although overall the LRR solutions are still considerably faster because they employ fewer
points.

Figure 24 compares the appearances of the grids when adaption occurs only onYCH4, as
shown in (a), and when adaption occurs on bothYCH4 andT , as shown in (b). In each case,

FIG. 24. In the axisymmetric laminar Bunsen flame, computed isotherms are displayed along with portions of
LRR grids, formed withYCH4 as the adaption variable (a), and formed withYCH4 andT as the adaption variables (b).
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a mirror image of the computed isotherms is displayed in the figure’s left half. The grid in
(b) contains additional refinement in the region of the diffusion flame halo, downstream
of the premixed flame front. Despite this difference, the locations of the isotherms (and
isopleths of other dependent variables) do not change significantly. This conclusion also
holds when examining the results obtained from adaption performed on all 20 dependent
variables (not shown).

The storage requirements for the basic implementations of each of the methods have been
given earlier in Eq. (16). SubstitutingNdep= 20 into (16) and adding the extra memory
required for the thermodynamic and transport properties, namely 205Npts, produce final
storage requirements of

StorageLRR = 4251Npts
(21)

StorageETP or FR= 4155.375Npts

for the axisymmetric laminar Bunsen flame. For a given number of grid points, these
values indicate that the LRR solution process requires only 1.023 times as much mem-
ory as on an ETP or FR gridwith the same number of points. Therefore, whenever an
ETP or FR grid requires more than 1.023 times the number of points as the LRR grid
from which it was formed, the LRR grid will consume less memory, as is the case forall
LRR/ETP/FR grid triples presented. It is worth noting thatwithout the LRR method, the
level of refinement present in the Adaption 3 grid (adaption based onYCH4) would not have
been possible because of the storage requirements of the corresponding ETP and FR grids.
The remainder of Tables VI and VII contain further examples of memory savings with the
LRR method.

6. CONCLUSIONS AND FUTURE DIRECTIONS

This paper has presented the LRR solution-adaptive gridding method, which has been
developed for the solution of discretized systems of coupled nonlinear elliptic partial dif-
ferential equations. New discretizations have been derived for use on its unstructured grids,
and the resulting discretized set of governing equations has been solved using a damped,
modified Newton’s method. The adaptive technique has as its basis the principle of weight
function equidistribution, upon which traditional tensor product (globally refined rectan-
gular) adaptive gridding methods are also founded. The LRR method has been applied
first to a simple test problem to which the analytical solution is known. The new multiple-
scale discretizations have been seen to produce a smaller overall error than the single-scale
discretizations commonly used on unstructured grids, and the layering technique has also
reduced errors while increasing grid robustness. LRR results are comparable in accuracy to
those obtained on larger equivalent tensor product (ETP) and equispaced fully refined (FR)
grids.

A realistic nonreacting application, that of flow in a thermally and dynamically driven
square cavity, has also been examined using the LRR method, as well as the corresponding
ETP and FR grids. Regardless of whether the cavity lid is stationary (natural convection
case) or moving (mixed convection case), the LRR, ETP, and FR results display excellent
agreement among values of the monitor quantities, and mid-plane velocity profiles are also
very close to previously published data, especially in the natural convection case. For all
results, the LRR grid solutions converge more quickly than their ETP and FR counterparts,
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and in several cases even theper-pointsolution times are shorter for LRR. LRR grids used
one-half to one-third the number of points as their ETP counterparts, and, on average, the
LRR grids consumed half the total computer memory of their ETP equivalents. Further
comparison reveals that LRR grids used one-half toone-hundredthas many points as their
FR counterparts, with commensurate memory savings.

The final application—a rich axisymmetric laminar Bunsen flame encompassing com-
plex chemistry, multicomponent transport, and an optically thin radiation submodel—once
again demonstrates the critical need for a method such as the LRR method, since neither
the ETP nor FR grids are capable (within the computer memory constraints) of the level
of refinement achieved with the LRR grids. While the rich Bunsen flame studied here
comprises both a premixed flameanda diffusion flame, the gradients present in premixed
flames are an order of magnitude larger than those found in diffusion flames. Therefore,
very fine spacing is seen to be especially important near the premixed flame front, since
the latter’s adequate resolution strongly influences flame length. Layering also plays an
important role because of the migration of the premixed flame front during the refinement
process. In general, the LRR method used less than half the memory and CPU time of
that required by the ETP grids, without compromising solution accuracy. (The ETP grid
corresponding to LRR Adaption 3 was too large for the computational resources available.)
In addition, the results are seen to be largely independent of the choice of adaption vari-
able(s). Comparisons were not possible with the FR grids, each of which greatly exceeded
computational resources, containing from 50 to 300 times as many points as their LRR
counterparts.

The list of practical problems to which the LRR method can be successfully applied
is lengthy. In [4, 5, 46], the new adaptive technique is applied to simple-chemistry and
full-chemistry axisymmetric laminar Bunsen flames, both lean and rich, as well as to an
axisymmetric diffusion flame with several different chemical mechanisms. In the future,
flames including better radiation submodels, in which the number of operations needed
to compute the radiation terms scales as the square of the number of grid points, can be
examined more efficiently using LRR grids. Soot models, which consume large amounts of
computer time with traditional adaptive gridding methods, may then be added. Furthermore,
aside from an expected increase in the level of complexity of the discretizations and the
unstructured nature of the grid, extension of the LRR method to three dimensions appears
feasible. In this latter context, the benefits of using LRR solution-adaptive gridding, mea-
sured in terms of both decreased computer storage requirements and lower execution times,
should be even greater than those in two dimensions.
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